Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros


Tipo del documento
Intervalo de año de publicación
1.
Curr Biol ; 30(19): R1215-R1231, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022266

RESUMEN

The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.


Asunto(s)
Bacterias/patogenicidad , ADN Antiguo/análisis , ADN Bacteriano/genética , Animales , Bacterias/genética , Evolución Biológica , Evolución Molecular , Genoma/genética , Genoma Bacteriano/genética , Genómica/métodos , Humanos , Microbiota/genética , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Filogenia , Treponema/genética , Virus de la Viruela/genética , Vibrio cholerae/genética , Yersinia pestis/genética
3.
Int. j. lepr. other mycobact. dis ; 68(2): 121-128, Jun., 2000. tab, graf, map
Artículo en Inglés | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1226939

RESUMEN

The genetic diversity and related global distribution of 51 Mycobacterium leprae isolates were studied. Isolates were obtained from leprosy patients from 12 geographically distinct regions of the world and two were obtained from nonhuman sources. Polymerase chain reaction (PCR) followed by DNA sequencing was performed targeting the rpoT gene of M. leprae. Isolates were classified into two groups based on the number of tandem repeats composed of 6 base pairs in the rpoT gene. Isolates from Japan (except Okinawa) and Korea belonged to one group, while those from Southeast Asian countries, Brazil, Haiti and Okinawa in Japan belonged to a second genotype. M. leprae obtained from two nonhuman sources (an armadillo and a mangabey monkey) revealed the latter genotype. These results demonstrate the genetic diversity of M. leprae and the related genotype-specific distribution in the world.


Asunto(s)
Genoma/genética , Genotipo , Mycobacterium leprae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA